Googlisari

Τρέχοντα….

Εκπαιδευτικά νέα….

Τα νέα της lisari team...




1) Την Τρίτη 29 Αυγούστου αναμένεται - εκτός απροόπτου - να δημοσιοποιηθούν από το υπουργείο Παιδείας οι βάσεις εισαγωγής στα τμήματα των ΑΕΙ, καθώς και τα ονόματα των επιτυχόντων.

2) Το διδακτικό έτος αρχίζει την 1η Σεπτεμβρίου 2017 και λήγει την 21η Ιουνίου 2018 του επόμενου έτους.

Η διδασκαλία των μαθημάτων αρχίζει στις 11 Σεπτεμβρίου 2017 (ημέρα Δευτέρα) και λήγει στις 15 Ιουνίου 2018 (ημέρα Παρασκευή).

Οι χρονικές περίοδοι από 1 μέχρι 10 Σεπτεμβρίου και από 15 μέχρι και 21 Ιουνίου μπορεί να αξιοποιούνται για την υλοποίηση προγραμμάτων επιμόρφωσης των εκπαιδευτικών.

Σημείωση: Όταν η 11η Σεπτεμβρίου ή η 15η Ιουνίου είναι αργία, τα μαθήματα αρχίζουν την επόμενη εργάσιμη ημέρα ή λήγουν την προηγούμενη εργάσιμη ημέρα αντίστοιχα.

3)ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΤΟΥΣ 2017 ΤΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΔΕΥΤΕΡΑ 4-9-2017

ΓΛΩΣΣΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΤΡΙΤΗ 5-9-2017

ΑΡΧΑΙΑ + ΜΑΘΗΜΑΤΙΚΑ

ΤΕΤΑΡΤΗ 6-9-2017

ΙΣΤΟΡΙΑ + ΦΥΣΙΚΗ + ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π.Π

ΠΕΜΠΤΗ 7-9-2017

ΛΑΤΙΝΙΚΑ + ΧΗΜΕΙΑ + Α.Ο.Θ

ΠΑΡΑΣΚΕΥΗ 8-9-2017

ΒΙΟΛΟΓΙΑ Γ.Π. + Ο.Π

ΣΑΒΒΑΤΟ 9-9-2017

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ + ΙΣΤΟΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Ως ώρα έναρξης εξέτασης ορίζεται για όλα τα μαθήματα η 16.00 μ.μ. Η προσέλευση των υποψηφίων στις αίθουσες εξέτασης γίνεται 30 λεπτά τουλάχιστον πριν από την έναρξη των εξετάσεων. Η διάρκεια εξέτασης κάθε μαθήματος ορίζεται σε τρεις (3) ώρες.


1) Το πρώτο βιβλίο της ομάδα μας για την Επανάληψη στη Γ΄ Λυκείου

(18/2/2016)! Νέα επανέκδοση (26/6/2017) χωρίς το ένθετο, εμπλουτισμένο και με τα θέματα των Πανελλαδικών εξετάσεων 2016 και 2017!


2) Με καμάρι σας παρουσιάζουμε το
2ο βήμα (20/12/2016) της ομάδα μας για τους μαθητές των ΕΠΑ.Λ στη Γ Λυκείου!


3) Έπεται και το τρίτο βήμα της ομάδας.

Κυκλοφορεί (16/3/17)!!

Ένα απαραίτητο εργαλείο για όλους τους μαθητές, ένα βιβλίο στοχευμένο στο μαθητή που έχουμε στο σχολείο, στο Φροντιστήριο στην τάξη.


(νέο) Διαβάστε την πρότασή μας για τη διδασκαλία των μαθηματικών στη Γ Λυκείου.

Το σχολικό βιβλίο με συνδυασμό των δύο βοηθημάτων της lisari team.


Κυριακή, 11 Σεπτεμβρίου 2011

19η Άλυτη άσκηση: Τελευταίο ψηφίο please!


Βρείτε και δικαιολογήστε το τελευταίο ψηφίο
του αριθμού 72011


Η λύση όπως και η μεθοδολογία αυτού του είδους των ασκήσεων, θα δοθεί σε σύντομο διάστημα.

Όποιος ενδιαφέρεται να δώσει λύση πρέπει να είναι απλή, κατανοητή  και όσο γίνεται αναλυτική (η δυσκολία χρήσης Latex στα σχόλια είναι κατανοητή)!

Δείτε στα σχόλια 3 όμορφες λύσεις! Ξεχωρίζει η λύση του Γιάννη Φιορεντίνου με στοιχεία - γνώσεις Φυσικής! 




Η πηγή άρα και η έμπνευση της άσκησης είναι η ανάρτηση που βρήκα εδώ, http://papaveri48.blogspot.com/2011/06/blog-post_24.html και μετά από ερωτήσεις του Carlo (papaveri) να εξηγήσω την ίδια άσκηση με εκθέτη το 2011 (δείτε σχόλια http://lisari.blogspot.com/2011/09/blog-post_08.html) δημιούργησε αυτό το θέμα!

Σε ευχαριστούμε Carlo!

7 σχόλια :

  1. Έχουμε :

    7^2=-1(mod10)
    7^2006=-1(mod10)
    7^2007=3(mod10)
    7^2011=3(mod10)

    Άρα το τελευταίο ψηφίο είναι 3.

    ΑπάντησηΔιαγραφή
  2. Έχουμε:
    7^1=7 (τελευταίο ψηφίο 7)
    7^2=49 (τελευταίο ψηφίο 9)
    7^3=343 (τελευταίο ψηφίο 3)
    7^4=2401 (τελευταίο ψηφίο 1)
    7^5=16807 (τελευταίο ψηφίο 7)
    ...κλπ
    Παρατηρούμε μια "περιοδικότητα" με περίοδο 4 στην εμφάνιση του τελευταίου ψηφίου. (Το τελευταίο ψηφίο οιασδήποτε δύναμης μπορεί να είναι-διαδοχικά- κάποιος από τους αριθμούς 7,9,3 και 1, ξεκινώντας από το 7^1=7).
    Έτσι λοιπόν, και επειδή 2011/4
    δίνει πηλίκο 502 και υπόλοιπο 3, το τελευταίο ψηφίο θα είναι το 3.
    Ή (πιο φορμαλιστικά):
    2011=3(mod4)
    Ο αριθμός 7^2011 έχει 1700 ψηφία!
    (Απλά από περιέργεια "ρώτησα" το Mathematica).

    ΑπάντησηΔιαγραφή
  3. Και κοίτα "σύμπτωση" Μάκη:

    2011=3(mod4) και επίσης:
    7^2011=3(mod10).

    ΑπάντησηΔιαγραφή
  4. Μα η αρχή του Heizenberg δεν απαγορεύει τις συμπτώσεις;

    ΑπάντησηΔιαγραφή
  5. Φίλε MichailidisK,
    έγραψα το δεύτερο σχόλιο, επειδή θεώρησα ότι η πρώτη μου απάντηση ίσως δεν ήταν καταφανής για όλους τους αναγνώστες, λόγω του (κοινού) αποτελέσματος 3. Τώρα που το ξαναβλέπω όμως μοιάζει σαν να υπαινίσσομαι κάτι για τη λύση σου. Ζητώ συγνώμη.

    ΑπάντησηΔιαγραφή
  6. Τελικά η εικόνα που έβαλα δεν ήταν τυχαία!

    Ευχαριστώ και τους δύο φίλους, άριστες λύσεις, απλά του Γιάννη είναι κατανοητή και στον μαθητή του Γυμνασίου!

    Heizenberg; Αρχή της απροσδιοριστίας;

    ΑπάντησηΔιαγραφή
  7. @ Χατζόπουλος Μάκης
    Μάκη σ' ευχαριστώ. Χαίρομαι που έγινα η αιτία να δημιουργηθεί μια τόσο ωραία ανάπτυξη σ' ένα θέμα μαθηματικό που ωφελήθηκα πολύ μαθαίνοντας το πως λύνονται αυτού του είδους οι ασκήσεις.

    ΑπάντησηΔιαγραφή

Creative Commons License Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.
Related Posts Plugin for WordPress, Blogger...