Googlisari

Τρέχοντα….

Εκπαιδευτικά νέα….

Τα νέα της lisari team...




1) Την Τρίτη 29 Αυγούστου αναμένεται - εκτός απροόπτου - να δημοσιοποιηθούν από το υπουργείο Παιδείας οι βάσεις εισαγωγής στα τμήματα των ΑΕΙ, καθώς και τα ονόματα των επιτυχόντων.

2) Το διδακτικό έτος αρχίζει την 1η Σεπτεμβρίου 2017 και λήγει την 21η Ιουνίου 2018 του επόμενου έτους.

Η διδασκαλία των μαθημάτων αρχίζει στις 11 Σεπτεμβρίου 2017 (ημέρα Δευτέρα) και λήγει στις 15 Ιουνίου 2018 (ημέρα Παρασκευή).

Οι χρονικές περίοδοι από 1 μέχρι 10 Σεπτεμβρίου και από 15 μέχρι και 21 Ιουνίου μπορεί να αξιοποιούνται για την υλοποίηση προγραμμάτων επιμόρφωσης των εκπαιδευτικών.

Σημείωση: Όταν η 11η Σεπτεμβρίου ή η 15η Ιουνίου είναι αργία, τα μαθήματα αρχίζουν την επόμενη εργάσιμη ημέρα ή λήγουν την προηγούμενη εργάσιμη ημέρα αντίστοιχα.

3)ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΤΟΥΣ 2017 ΤΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΔΕΥΤΕΡΑ 4-9-2017

ΓΛΩΣΣΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΤΡΙΤΗ 5-9-2017

ΑΡΧΑΙΑ + ΜΑΘΗΜΑΤΙΚΑ

ΤΕΤΑΡΤΗ 6-9-2017

ΙΣΤΟΡΙΑ + ΦΥΣΙΚΗ + ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π.Π

ΠΕΜΠΤΗ 7-9-2017

ΛΑΤΙΝΙΚΑ + ΧΗΜΕΙΑ + Α.Ο.Θ

ΠΑΡΑΣΚΕΥΗ 8-9-2017

ΒΙΟΛΟΓΙΑ Γ.Π. + Ο.Π

ΣΑΒΒΑΤΟ 9-9-2017

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ + ΙΣΤΟΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Ως ώρα έναρξης εξέτασης ορίζεται για όλα τα μαθήματα η 16.00 μ.μ. Η προσέλευση των υποψηφίων στις αίθουσες εξέτασης γίνεται 30 λεπτά τουλάχιστον πριν από την έναρξη των εξετάσεων. Η διάρκεια εξέτασης κάθε μαθήματος ορίζεται σε τρεις (3) ώρες.


1) Το πρώτο βιβλίο της ομάδα μας για την Επανάληψη στη Γ΄ Λυκείου

(18/2/2016)! Νέα επανέκδοση (26/6/2017) χωρίς το ένθετο, εμπλουτισμένο και με τα θέματα των Πανελλαδικών εξετάσεων 2016 και 2017!


2) Με καμάρι σας παρουσιάζουμε το
2ο βήμα (20/12/2016) της ομάδα μας για τους μαθητές των ΕΠΑ.Λ στη Γ Λυκείου!


3) Έπεται και το τρίτο βήμα της ομάδας.

Κυκλοφορεί (16/3/17)!!

Ένα απαραίτητο εργαλείο για όλους τους μαθητές, ένα βιβλίο στοχευμένο στο μαθητή που έχουμε στο σχολείο, στο Φροντιστήριο στην τάξη.


(νέο) Διαβάστε την πρότασή μας για τη διδασκαλία των μαθηματικών στη Γ Λυκείου.

Το σχολικό βιβλίο με συνδυασμό των δύο βοηθημάτων της lisari team.


Δευτέρα, 19 Ιουνίου 2017

Πανελλαδικές εξετάσεις 2017: Μαθηματικά Γενικής Παιδείας

Η ώρα των Μαθηματικών της Γενικής Παιδείας! 

19 Ιουνίου και οι μαθητές εξετάζονται ακόμα! Πέρυσι τέτοια περίοδο είχαμε τις επαναληπτικές εξετάσεις. Οι υποψήφιοι στο εν λόγω μάθημα είναι λίγοι οπότε το μοναδικό ενδιαφέρον που βρίσκουμε είναι αν τα θέματα θα παραμείνουν στο περσινό επίπεδο δυσκολίας. Αν θα δούμε έστω ένα ερώτημα συνδυαστικό. Θα είναι άδικο αν το επίπεδο ανέβει, αφού και με αυτά τα θέματα οι υποψήφιοι της θεωρητικής δυσκολεύονται.


Η ομάδα μας, η lisari team θα λύσει και φέτος (ή τουλάχιστον θα προσπαθήσει) τα θέματα των εξετάσεων όπως έκανε σε όλα τα θέματα των εξετάσεων 2017. Γρήγορα και σωστά...

Τα Θέματα εξετάσεων (από το Υπουργείο Παιδείας) 

και οι λύσεις από τη lisari team!

- Οι εκφωνήσεις των ΓΕΛ σε word / Επιμέλεια: Γιάννης Ζαμπέλης 

- Οι εκφωνήσεις των εσπερινών ΓΕΛ σε word / Επιμέλεια: Χρήστος Τσουκάτος


3 σχόλια :

  1. οι προβλεψεις μου(νιωθω σαν να παιζω ταβλι με τον ευατο μου κ να χανω αλλα δν πειραζει): Θεμα Α αποδειξη:απο κανονες παραγωγισης ισως η χ τετραγωνο .. απο ορισμο cv και κλασσικο ορισμο πιθανοτητας ισως συμπληρωση κενων οπως Επαλ .Θεμα Β ευκολη στατιστικη ισως ζητηθουν και σχηματα(ραβδογραμμα κτλ) Θεμα Γ f(x)=...πηλικο με e^x στον παρονομαστη μονοτονια-ακροτατα-ργθμος μεταβολης στο x0=1 κτλ ισως ποτε ο ρυθμος μεταβολης του συντελεστη διευθυνσης της εφαπτομενης στο x0=1 Θεμα Δ πιθανοτητες και κανονες λογισμου πιθανοτητων ισως λιγο συνδυαστικο με καποιο οριο η εξισωση..

    ΑπάντησηΔιαγραφή
  2. Τα πιο εύκολα θέματα που έβαλαν από τη δημιουργία αυτού του θεσμού των εξετάσεων (2000). Κακώς λέει "να βρεθούν τα ακρότατα" και δεν δίνεται η ρίζα 5. Η φράση "να μελητηθεί ως προς τα ακρότατα" είναι η σωστή. Εν συντομία η μέση τιμή είναι 4, η διάμεσος 4, η διασπορά 5 και δεν είναι ομοιογενής. Ένα ακρότατο (1/2,3/4), η ψ=3x-3 είναι η εφαπτομένη, σημεία τομής με άξονες (1,0) και (0,-3) και 1/2 το όριο. Στο Δ Ρ(Α΄)=2/3, Ρ(ΑτομηΒ)=2/9, Ρ(Α-Β)=1/9, Ρ(Β-Α)=4/9, Ρ(Γ)max=2/9.

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Σωστά ως προς την έκφραση των ακροτάτων θα έπρεπε να είχε ζητηθεί αλλιώς, αλλά την ρίζα 5 δεν έπρεπε να δίνεται. Ήταν ξεκάθαρο αν το δείγμα είναι ομοιογενές ή όχι.

      Διαγραφή

Creative Commons License Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ελλάδα.
Related Posts Plugin for WordPress, Blogger...